

Adding Wall Insulation

Maximum Coverage				
Sidewalls	Thickness (inches)	Square Feet per Bag		Weight per
		16" O.C.	24" O.C.	Square Foot
R-13 (2x4)	3.5	(33.8)	32.7	0.758
R-20 (2x6)	5.5	21.5	20.8	1.192

Assume a 15% waste allowance for spillage – (Certification written testing may not consider this).

How many bags of insulation would be called for if insulating 1200 ft² of wall with 2x4 studs on 16" centers?

Bags: _____ (1200
$$\div$$
 33.8 = 35.5 bags x 1.15 = **40.8 - 41 bags**)

What if a coverage chart is not available?

How many cubic feet are in each square foot of wall?

For 2x4 walls: 1ft x 1ft x 3.5 inches of wall cavity \div 12 inches = .2917 ft³ For 2x6 walls: 1ft x 1ft x 5.5 inches of wall cavity \div 12 inches = .4583 ft³

Assume $3.5 \, lbs/ft^3$ density and $36 \, lb$. bags. How many bags of insulation would be called for to insulate that same $1200 \, ft^2$ of wall with 2x4 studs on 16" centers?

Bags: _____ (1200 x .2917 x $3.5 \div 36 = 34 \text{ bags } x 1.15 = 39.1 - 39 \text{ bags})$

Look at it another way:

High density is considered between 3.5 lbs/ft³ and 4 lbs/ft³. How many pounds per square foot would that work out to be for a 2x4 wall?

$$3.5 \text{ lbs/ft}^3 \text{ x .} 2917 \text{ ft}^3 = 1.02 \text{ lbs/ft}^2$$

 $4.0 \text{ lbs/ft}^3 \text{ x .} 2917 \text{ ft}^3 = 1.17 \text{ lbs/ft}^2$

A close estimation at the 3.5 lb density would be to take the square footage of the wall and divide it by the # weight of the bag.

 $1200 \text{ ft}^2 \text{ wall} \div 36 \text{ lb. bag} = 33.3 \text{ bags x } 1.15 = 38 \text{ bags} - \text{Very close to } 39$